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GOALS
The goals of this project are (1) to study the global aerosol cycle and to make a more

quantitative evaluation of the effects of aerosol emissions on the Earth’s radiative balance; and
(2) to identify and analyze the responsible processes in aerosol/cloud/climate interactions.

ACCOMPLISHMENT
(1) Model Enhancement

We have revised our coupled climate/chemistry models to examine the forcing by all
primary aerosol components.  The revised model now calculates the following aerosol
compounds: sulfate, dust, sea salt, and carbonaceous aerosols (biomass and fossil fuel organic
and black carbon).  This new version was also used to initiate a study for the direct forcing
assessment that covers the years 1950 to present using the varying fossil fuel emissions.

Much of our effort also went to model the effect of absorbing aerosols on clouds.  The
presence of black carbon in cloud may reduce the cloud albedo.  It is important not only to
account for the change in droplet concentration associated with carbonaceous aerosols acting as
cloud condensation nuclei, but also to account for the absorption that occurs when black carbon
becomes associated with drops.  We modeled the BC absorbing effect on clouds through
modification of the refractive index for a droplet/BC mixture using the effective medium
approximation together with the Maxwell Garnett mixing rule.  Given the refractive index for the
droplet with embedded BC particles, we approximated its single scattering albedo using
geometric optics.  By comparison with the single scattering albedo tables, we developed a
parameterization of the single scattering albedo for a droplet/BC mixture as a function of the
drop radius, volume fraction of BC within the drop, and the wavelength of solar radiation (see
Figure 1).  This parameterization was incorporated into our coupled models to evaluate the
impact of absorbing particles on aerosol indirect forcing.
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Figure 1.  Variations of single scattering albedo of cloud drops as a function of volume BC
fraction and wavelength.
(2) Comparisons to In-Situ Measurements

Model simulated aerosol concentrations were compared to measurements to validate the
adequacy of the model.  Figure 2 presents comparisons of simulated seasonal surface
concentrations of non-seasalt sulfate, dust, and sea salt to measurements at American Samoa and
Barbados [Savoie and Prospero, private communication, 2000].  Most of the simulated
concentrations are within one deviation of the mean of the measurements, but discrepancies do
exist.  Figure 3 shows the observed and simulated surface concentrations for both organic carbon
and black carbon at a number of locations [Liousse et al., 1996; Cooke et al., 1999].
Comparisons of carbonaceous aerosols to observations are more difficult because the measured
concentrations are only available on a campaign basis such that the measured values are subject
to short term variability.  Despite these facts, most simulated values are within a factor of 2 of the
measurements.

Figures 2. Simulated concentrations versus measurements at American Samoa and Barbados.
Error bars are one standard deviation above and below the mean of the measurements.  Also
shown are the simulated concentrations of anthropogenic sulfate (open circles).
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Figure 3.  Observed and simulated surface concentrations of OC and BC.  Correlation is
presented by r.  Two thin lines represent the range above and below the observed values by a
factor of 2.
(3) Impact of Anthropogenic Aerosols on Cloud Number Concentration and Susceptibility

A modified cloud drop parameterization from Chuang et al. [1997] was applied into our
coupled models to better represent the number concentration of cloud drops (Nd) nucleated on
aerosols with different size distributions.  We found that the increases of Nd can be up to 200 cm-
3 due to anthropogenic carbonaceous aerosols and up to 30 – 90 cm-3 due to change of aerosol
size distribution associated with the deposition of anthropogenic sulfate on pre-existing particles.
Our simulations also indicate that the presence of industrial aerosols has significantly reduced
cloud susceptibility, i.e., the sensitivity of cloud albedo to changes in Nd, in the northern
hemisphere in January, and biomass aerosols have reduced susceptibility in the southern
hemisphere in July.

Figure 4 presents the susceptibility for warm clouds and those derived from the satellite-
retrieved cloud optical thickness τ and effective drop radius re.  These data were retrieved from
1989 - 1991 AVHRR measurements using the algorithm developed by Kawamoto et al. [2001].
The liquid water path is calculated from wpath = (2/3)ρ τ re.  The column Nd is estimated from
Nd,col = τ re/(2π rv

3), where rv is the volume mean radius of the drop size distribution.  Here, we
assume a log-normal drop size distribution with a standard deviation σ = 1.4 and a mode radius
ro = re exp[-2.5 (lnσ)2].  For a vertically homogeneous drop profile, Nd,col = Nd,s hs and wpath = wL
hs, where Nd,s and hs are the satellite-retrieved drop concentration and cloud thickness for warm
clouds, respectively.  A typical value of liquid water content wL = 0.30 g m-3 is used to estimate
hs and then obtain the satellite-retrieved Nd,s.  General features of the satellite-derived cloud
susceptibility are similar to those of the model, though the magnitude is higher by about a factor
of 2 in most of the regions except over the South Pacific Ocean in July.  This discrepancy may be
caused by the uncertainty in the prescribed drop size distribution where the satellite-retrieved
Nd,col varies with the assumed value of σ.  For re = 10 µm, the retrieved Nd,col would be 27%
lower if σ=decreases from 1.4 to 1.1 and would be higher by a factor of 3 if σ = 2.0.  There are
further uncertainties associated with the prescribed liquid water content and the retrieved cloud
top temperature.  Further investigation is needed to give an overall uncertainty of the estimated
cloud susceptibility derived from both the model and satellite measurements.
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Figure. 4.  Comparison of model calculated cloud susceptibility (×10-3 cm3) for warm clouds
with those inferred from satellite measurements.
(4) First Indirect Forcing by Anthropogenic Aerosols

Figure 5a presents the simulated first indirect forcing by anthropogenic carbonaceous
aerosols for January and July.  In general, the forcing in July is stronger than that in January, and
yields a global average of –1.59 W m-2 and –1.05 W m-2, respectively.  The maximum value is
about –7.7 W m-2 along the west coast of Mexico in January and –8.6 W m-2 along the east coast
of Brazil in July.  Anthropogenic carbonaceous aerosols together with natural particles are treated
as an external mixture in the cloud drop parameterization and lead to an annual average forcing
of –1.51 W m-2.  This value is much lower than our previous study (–2.5 to –4.5 W m-2, see
Penner et al., 1996) in which part of natural emissions were absent.  Figure 5b shows the first
indirect forcing by anthropogenic sulfate deposited onto pre-existing particles derived from
natural emissions and anthropogenic carbonaceous sources.  The maximum forcing is about –1.6
W m-2 in January and –5.1 W m-2 along the east coast of the United States.  While the forcing
pattern is similar to that calculated previously in Chuang et al. [1997], the forcing magnitude is
considerably smaller and leads to a global annual average of –0.30 W m-2.  Current calculations
used the model-generated aqueous sulfate production rate.  This rate is approximately 88% of the
total sulfate source strength.  These simulations may, therefore, be compared to the previously
calculated forcing of –0.41 W m-2 for a case of prescribed 85% sulfate production through the
aqueous pathway [Chuang et al., 1997].  The present values are smaller both because of the
larger source strength for natural organic aerosols and because of the presence of sea salt and
dust.  Figure 6 indicates that the global average of the first indirect forcing by total anthropogenic
aerosols is largest in April-June associated with tropical biomass burning of savanna and forested
areas.  Its magnitude varies seasonally from –1.2 W m-2 in January to –2.4 W m-2 in May and
yields a global annual average of –1.85 W m-2.  Because of the nonlinear relationship between
cloud drop number and aerosol number concentrations, the total forcing does not equal the sum
of the forcing from each individual source.
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Figure 5.  Simulated monthly average aerosol indirect forcing (W m-2) due to (a) externally
mixed anthropogenic carbonaceous aerosols and (b) deposition of anthropogenic sulfate onto pre-
existing particles (natural particles + anthropogenic carbonaceous particles).

Figure 6.  Seasonal variations of simulated global average of the first indirect forcing (W m-2).
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